

Typical IAQ problems and improvement strategies for health facilities

Ir Dr. KW MUI, Horace

BEng(Hons), PhD, FHKIE, MCIBSE, MASHRAE, CEng, RPE
Associate Head & Associate Professor,
Department of Building Environment and Energy Engineering,
The Hong Kong Polytechnic University

Clinics & health centres in Hong Kong

- · Whole building
 - Provide various services including general and specialist out-patient clinic services, pharmacy, diagnostics and imaging, dental service, etc.
 - Served by mechanical ventilation and air conditioning (MVAC) system
- · Part of the existing commercial building
 - Provide several medical services, mostly general out-patient clinic services, pharmacy, diagnostics and imaging
 - · On one or several floors
 - · Served by MVAC system
 - Share public facilities (e.g. lift, toilet, lobby) with other businesses
 - Patients may need to travel for several floors for various services
- Small local clinics in residential areas
 - Usually provide only out-patient clinic services and pharmacy
 - In mall or on the street in residential areas
 - Served by MVAC, window type or split type air-conditioner

IAQ pollutants in clinics & health centres

- Carbon dioxide (CO₂)
 Carbon monoxide (CO)
 Formaldehyde (CH₂O)
- Volatile organic compounds (VOCs)
- Respirable suspended particulates (PM)
- Radon
- Glutaraldehyde (C₅H₈O₂)
- Nitrous oxide (N₂O)
- Latex allergens
- Airborne bacteria/ mould

Common IAQ pollutants

IAQ pollutants specific to healthcare facilities

Cause of IAQ problems

- Use of disinfectant/ chemicals which contain volatile organic compounds (VOCs)
- Patients as sources of airborne particles (e.g. airborne viruses and bacteria and fungus spores)
- Specific medical procedures (e.g. endoscopic procedures, tracheal intubation, nebulized therapy and bronchoscopy)
- Poor design of HVAC system originally for office usage
- Recycled air for energy efficiency
- Poor *filtration* performance
- Improper maintenance/ lack of cleaning of HVAC system

Consequences of poor IAQ

- Sick hospital syndrome (SHS)
 - · Headache, fatigue, eye and skin irritation
 - Lower productivity
- Hospital acquired infections
 - Patient-patient and healthcare worker-patient cross-infection
- Spreading of diseases among different floors through common building facilities
 - · Lift, door, toilet, HVAC system,

Patients and healthcare workers

- Higher risk for vulnerable populations
 - Elderly and children
 - · Patients with long-term illnesses
 - · Patients with immunodeficiency disorder
- Healthcare workers are also prone to health risks due to prolonged exposure to IAQ pollutants and occupationally harmful biological pollutants

Hong Kong's classic example - SARS

In 2003, SARS outbroke in General Inpatient Ward caused by a SARS patient be given with nebulized treatment

 Aerosolized coronavirus particles re-circulated in the whole ward, infecting 277 staff and patients, leading to the community outbreak in HK

In 2004, HK Government approved the construction of the $\mathbf{1}^{\text{st}}$ Infection Disease Control centre in HK

- 17-storeys with 108 negative pressure isolation beds
- · Started operation in 2007

IAQ improvement methods

- Mechanical ventilation
 - Diluting indoor air pollutants
 - Exhaust the contaminated indoor air
 - Introduce clean outdoor air into an air-conditioning building
 - Air change rates for outdoor air and total air are recommended by ASHRAE (1999,2001,2004,2007), AIA (2001) and CDC (1994)
- Filtration
 - Trap particulate contaminants
 - Various grade of filters can be used to achieve different degrees of cleanliness
 - Prefilter of 25% dust spot efficiency to remove large particles
 - Final filter should have at least 90% efficiency to collect nearly all fungal spores of 2-5µm diameter and bacteria in colony-forming units of 1µm diameter
 - Filtration requirements of some hospital areas are provided by ASHRAE (1999) and AIA (2001)

Area	Outdoor ACH	Total ACH	Outdoor air requirement	
	ACH	ACH	Cfm/p	L/s/p
Patient room	2	4	25	13
Operating theatre	15	15	30	15
Infectious isolation room	2	6		
Laboratory	2	6		
Pharmacy	2	4		
Darkroom	2	10		

- Differential pressure control/ Directional airflow control
 - · Maintain a differential pressure between two adjacent areas can restrict the air leakage in a single direction through the door undercut
 - · Ensure clean-to-less-clean airflows: air movement should be from clean zones to zones of progressively greater contamination

IAQ improvement methods

- Local exhaust ventilation
 - · Chemical fume hoods to control critical emission sources of chemical vapours
 - Ensure adequate removal of the pollutant
 - · Air cleaner with HEPA filter

Ultraviolet light Irradiation

- Upper-room irradiation
- · Duct irradiation
- · Mobile irradiation system

IAQ monitoring

- IoT real-time monitoring
 - · Automatic, low cost and manpower required
 - · All-in-one multiple sensor module for representative pollutants
 - · Compact design, mobile and easy to set-up
 - Real-time and smart analysis
- IAQ Certification Scheme

My research in improving IAQ in hospitals

Project Title: Effective Ventilation Strategies for Mitigating Infection Risks in Hospitals Objectives:

- Understand the spatial distribution of pathogenic bioaerosols in General Human Occupied Areas (GHOAs)
- · Identify the temporal influence of possible combinations of control and operational parameters on the estimation of infection risk within the mechanically ventilated enclosure in hospital
- Evaluate and update current air change requirements (ACH) in hospital
- Provide proper ventilation strategies which mitigate the risk of airborne infection transmission for GHOAs

- . Exhaust rate, b1 · Air change rate, c1 · Exhaust-to-emission • Exhaust location, c distance, b • Recirculation ratio. c . Door louver size, b
- Constrains: Operating parameters · Pipe distance to · Emission location

Washroom

- · Emission direction & · Wind direction & speed • Emission type
- · Emission temperature · Emission rate Pipe discharge · Emission species pressure Resident exposure
- · Emission species · Discharge speed & · Room geometry · Installation geometry

Drainage ventilation pipe

· Pipe diameter, a1

· Height above roof, as

Strategy: Control parameters

· Pressure relief

volume, a2

 Emission location · Emission direction & speed · Emission type • Emission rate · Emission species · Walking speeds &

> · Room geometry General inpatient wards, A&E. outpatient wards

exposure time

Air flow should never go from dirty to clean

Spatial exposure

a.b.c.

· Age of air

index

index

levels for scenarios

for receivers (HCW. patients & visitors'

Attributes

Air diffusion index

· Thermal comfort

· Indoor air quality

· Energy consumption

Optimized for

exposure risk in

hospital

Overall strategy and collaborative effort

- Data collection (Control and Operational parameters) and Computational Fluid Dynamics (CFD) simulation to understand spatial and temporal distribution of pathogenic bioaerosols under different ventilation strategies and emission scenarios
- Exposure Risk Assessment that helps to identify high risk zone in hospital
- Optimization of ventilation energy usage based on exposure risk

Deliverable: formulating ventilation strategies that minimize the risk of exposure to airborne infections in hospitals

Pathway to impact

- Inter-institutional collaboration locally and internationally
- Policy and regulations
- Improve international ventilation standards, codes of practice
- Ventilation strategies
- · Reference and guideline
- Better hospital design

Summary

Embrace more health-conscious design, and work cooperatively as an international community to solve problems, pave the way for a healthier future

Question & answer?

Acknowledgement: This project Effective Ventilation Strategies for Mitigating Infection Risks in Hospitals (No.: C5108-20GF) is funded by RGC CRF COVID-19 Collaborative Research Fund (RGC CRF) 2020