

High Risk Premises

Vulnerable Groups

Possible Out break if Teachers are

Schools and Elderly Homes: Physically vulnerable segment with long term close interaction

What we need to take care?

Air flow should never go from dirty to clean

Any solutions?

Problems today

- COVID-19 Virus is more viable than SARS in normal thermal condition
- Transmission of the virus through carrier in air seems to be effective
- The most effective way of precaution is to cut off all possible connections between people (not desirable)
- All interpersonal activities are halt and caused damage to most schooling (classroom, teacher's office)
- Difficult to perform effective risk assessment (Hidden paths of transmission are very hard to determine)
- Situations change so rapidly. When emergency out break takes place, how to respond?
- Actual Virus test in real environmental is not desirable

What is needed?

- Simple assessment method
- Minimal disturbance to tenants and occupants
- Rapid response and deployment
- Provide all possible ways of dispersion profile
- Provide an easy-to-understand presentation of the current situation to the occupants
- Provide suggestions of remedy for effective precaution (i.e. seating plans modification, occupant allocation, operation scheduling, air purifications, system modifications)

Ventilation & Transmission

Any Technologies?

Opening Minds • Shaping the Future 散组思維 • 成款未來

Ventilation Principles

· Ventilation is the supply of outdoor air to a building

Ventilation Principles

Why is building ventilation needed?

- · Ensure comfort and satisfaction
 - · Remove odor
 - · Avoid stuffiness
- · Maintain overall indoor air quality
 - · Remove indoor air pollutants (e.g., formaldehyde emitted from building materials, furnishings)
- · Support health and productivity of occupants

Ventilation Principles

Ventilation Principles

Ventilation Principles

Quality Indoor Environment

窗戶 Window at Light Well

Ventilation ... any indicator?

Carbon Dioxide (CO₂) as Proxy for Ventilation Rates

- CO₂ concentrations are often used as an easily measured proxy for ventilation rates
 - When unoccupied, indoor CO₂ approaches outdoor background level (0.04%, or 400 parts per million (ppm))
 - When people enter the space, CO₂ increase over time because we exhale CO₂ (4%)
 - Peak indoor CO₂ concentration above 1,000 ppm indicates ventilation rates less than 7 L/s (15 cfm) per person (building ventilation requirement)
- Research suggests exposure to elevated level of CO₂ can also impact cognitive performance

Ventilation ... any indicator?

CO₂ Concentrations Measured in a Classroom

Restaurant Ventilation

換氣率 (Air Change Rate) = 每小時每人立方米新鮮空氣 (m³/hour/person fresh air) x 人數 (person)

餐廳的體積 (m3)

Restaurant Ventilation

A Guide to Application for Restaurant Licences (fehd.gov.hk)

HEALTH REQUIREMENTS FOR THE ISSUE OF PROVISIONAL GENERAL/LIGHT REFRESHEMENT RESTAURANT LICENCE

STANDARD REQUIREMENTS

- 1. <u>Ventilation</u>: When natural ventilation is insufficient (i.e., where openings and windows to the open air are less than 1/10th of the floor area), a ventilating system shall be provided to give not less than 17 cubic metres of outside air per hour for each person that the premises are designed to accommodate. A ventilating system, which shall be independent of any ventilating system provided for the seating accommodation, shall be provided for the kitchens and toilet rooms of the premises.
- Toilets: At least one toilet compartment, one urinal and one wash-hand basin shall be
 provided on the premises for the use of customers and staff. If the premises are designed to
 accommodate more than 25 customers, at least 50% of the provision required for the issue of a
 full licence have been provided.

Ventilation

How to calculate the Air Change Per Hour (ACH)

Use	Factor used in determining the population
Seating Area	1 m ² /person
Food Room Area	4.5 m ² /person
Dancing Area	0.75 m ² /person

ACH

= Number of occupants (person) x fresh air quantity (m³/h/person)

Volume of the space (m³)

換氣率 (Air Change Rate) = 每小時每人立方米新鮮空氣 (m³/hour/person fresh air) x 人數 (person)

餐廳的體積 (m³)

Ventilation calculation

What is decay test??

Ventilation calculation

- ACH analysis by Decay Mode
- Source apportionment analysis by Constant Injection Mode
- Cross Flow/Contamination analysis by Matrix Mode (Multi-Dosers/Receivers Sycnchronized Dosing Matrix)

Tracer Gas Matrix Surveying System

- Rapid deployment for Instant response
- Minimal training required for deployment
- Remote real time analysis possible
- Environmentally friendly R134A applied as easily available tracer gas

Real Time Tracer Gas Profile at 3 defined locations

Tracer Gas Receiver

Tracer Gas Receiver

Tracer Gas Receiver

Ventilation (Example)

This is the update technology??

Ventilation and transmission path - How to measure?

Tracer Gas Matrix Measurement

Pathogen Source Dispersion Analysis Contaminants Apportionment Analysis

Identification of transmission path – How to measure?

Identification of transmission path – How to measure?

Identification of transmission path - How to measure?

Identify the dispersion of COVID-19

- Applicable to special situation, for instant during a pandemic, to conduct monitoring in wet market and restaurants where transmissions are observed, even clean-up has been done
- Once the equipment is set-up, the system will release and track the tracer gas remotely without the presence of technician. Much less manpower and time are needed
- No personnel is required to be on-site. Data will be automatically transmitted to server for analysis
- Compare to traditional method which takes about half a day to collect and analysis the data, this new approach takes only 2 hours to report the pathogenic bioaerosol dispersion pathway

The Tracer Gas Measurement Exercise helps to

- Define better seating arrangement at with respect to the existing ventilation profile
- Determine the potential pathogen dispersion coverage
- Determine the existing risk level deduced by the ACH evaluating
- Determine the optimized occupation number
- Conduct cross platform analysis with long term IAQ monitoring data
- Define emergency control plan
- Define ventilation system modification plan

Any more examples?

In Association with Hong Kong Philharmonic Orchestra

Objective for HK Phil On Stage Air Flow Analysis

- Determine the spreading path of potential pathogen from any player on stage
- Determine the potential risk level for other occupants on stage
- Determine the ventilation rate of the current system settings
- Help defining an optimized seating plan to minimize risk level
- Determine the best way of deployment of air purifiers if necessary
- Determine the best arrangement of barrier settings
- Evaluate the risk level at the common areas where the players may gather
- Define all possible measures that could provide a safe environment for the next performance

Tracer gas profile against Individual Barrier

Test Upon Individual Barrier Setting

Experimental condition

- · Doser: Flute player
- Receiver
 - R1 54: conductor
 - R2 55: back-right
 - R3 56: front-left
- Tracer gas operation
 - Release at: 10:56:10
 - Stop at: 11:07:01

Tracer gas profile against Individual Barrier

Tracer gas profile against Optimised Seatings with Inline Barriers

Test upon Optimized Seatings with Inline Barriers

Experimental condition

- Doser: Flute player
- Receiver
 - R1 54: front-right
 - R2 55: back-right
 - R3 56: further back-right
- · Tracer gas operation
 - Release at: 14:53:00
 - Stop at: 15:03:36

Department of Building Environment and Energy Engineering 建築環境及能源工程學系

Tracer gas profile against Optimised Seatings with Inline Barriers

So...?

Recommendation (1): Provide Adequate Ventilation

Students more *alert* and *focus*; Fewer respiratory symptoms and illness absence

Students tired, loss of concentration; Increase respiratory symptoms and illness absence

In conclude ...

Embrace more health-conscious design, and work cooperatively as an international community to solve problems, pave the way for a healthier future

Question & answer?

Acknowledgement: This research was jointly supported by a grant from the **Collaborative Research Fund (CRF) COVID-19 and Novel Infectious Disease (NID) Research Exercise**, Research Grants Council of the Hong Kong Special Administrative Region, China (Project no. PolyU P0033675/C5108-20G) and the **Research Institute for Smart Energy (RISE)** Matching Fund (Project no. P0038532).